3.1.18 \(\int \frac {(a+b \text {ArcTan}(c+d x))^3}{(c e+d e x)^2} \, dx\) [18]

Optimal. Leaf size=163 \[ -\frac {i (a+b \text {ArcTan}(c+d x))^3}{d e^2}-\frac {(a+b \text {ArcTan}(c+d x))^3}{d e^2 (c+d x)}+\frac {3 b (a+b \text {ArcTan}(c+d x))^2 \log \left (2-\frac {2}{1-i (c+d x)}\right )}{d e^2}-\frac {3 i b^2 (a+b \text {ArcTan}(c+d x)) \text {PolyLog}\left (2,-1+\frac {2}{1-i (c+d x)}\right )}{d e^2}+\frac {3 b^3 \text {PolyLog}\left (3,-1+\frac {2}{1-i (c+d x)}\right )}{2 d e^2} \]

[Out]

-I*(a+b*arctan(d*x+c))^3/d/e^2-(a+b*arctan(d*x+c))^3/d/e^2/(d*x+c)+3*b*(a+b*arctan(d*x+c))^2*ln(2-2/(1-I*(d*x+
c)))/d/e^2-3*I*b^2*(a+b*arctan(d*x+c))*polylog(2,-1+2/(1-I*(d*x+c)))/d/e^2+3/2*b^3*polylog(3,-1+2/(1-I*(d*x+c)
))/d/e^2

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {5151, 12, 4946, 5044, 4988, 5004, 5112, 6745} \begin {gather*} -\frac {3 i b^2 \text {Li}_2\left (\frac {2}{1-i (c+d x)}-1\right ) (a+b \text {ArcTan}(c+d x))}{d e^2}-\frac {(a+b \text {ArcTan}(c+d x))^3}{d e^2 (c+d x)}-\frac {i (a+b \text {ArcTan}(c+d x))^3}{d e^2}+\frac {3 b \log \left (2-\frac {2}{1-i (c+d x)}\right ) (a+b \text {ArcTan}(c+d x))^2}{d e^2}+\frac {3 b^3 \text {Li}_3\left (\frac {2}{1-i (c+d x)}-1\right )}{2 d e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTan[c + d*x])^3/(c*e + d*e*x)^2,x]

[Out]

((-I)*(a + b*ArcTan[c + d*x])^3)/(d*e^2) - (a + b*ArcTan[c + d*x])^3/(d*e^2*(c + d*x)) + (3*b*(a + b*ArcTan[c
+ d*x])^2*Log[2 - 2/(1 - I*(c + d*x))])/(d*e^2) - ((3*I)*b^2*(a + b*ArcTan[c + d*x])*PolyLog[2, -1 + 2/(1 - I*
(c + d*x))])/(d*e^2) + (3*b^3*PolyLog[3, -1 + 2/(1 - I*(c + d*x))])/(2*d*e^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 4946

Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTan[c*x^
n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))),
x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1]

Rule 4988

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[(a + b*ArcTan[c*x])
^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - Dist[b*c*(p/d), Int[(a + b*ArcTan[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x/d))
]/(1 + c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0]

Rule 5004

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTan[c*x])^(p +
 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1]

Rule 5044

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(-I)*((a + b*ArcT
an[c*x])^(p + 1)/(b*d*(p + 1))), x] + Dist[I/d, Int[(a + b*ArcTan[c*x])^p/(x*(I + c*x)), x], x] /; FreeQ[{a, b
, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0]

Rule 5112

Int[(Log[u_]*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[I*(a + b*ArcTa
n[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)), x] - Dist[b*p*(I/2), Int[(a + b*ArcTan[c*x])^(p - 1)*(PolyLog[2, 1 - u]
/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 - 2*(I
/(I + c*x)))^2, 0]

Rule 5151

Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[(f*(x/d))^m*(a + b*ArcTan[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0
] && IGtQ[p, 0]

Rule 6745

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b \tan ^{-1}(c+d x)\right )^3}{(c e+d e x)^2} \, dx &=\frac {\text {Subst}\left (\int \frac {\left (a+b \tan ^{-1}(x)\right )^3}{e^2 x^2} \, dx,x,c+d x\right )}{d}\\ &=\frac {\text {Subst}\left (\int \frac {\left (a+b \tan ^{-1}(x)\right )^3}{x^2} \, dx,x,c+d x\right )}{d e^2}\\ &=-\frac {\left (a+b \tan ^{-1}(c+d x)\right )^3}{d e^2 (c+d x)}+\frac {(3 b) \text {Subst}\left (\int \frac {\left (a+b \tan ^{-1}(x)\right )^2}{x \left (1+x^2\right )} \, dx,x,c+d x\right )}{d e^2}\\ &=-\frac {i \left (a+b \tan ^{-1}(c+d x)\right )^3}{d e^2}-\frac {\left (a+b \tan ^{-1}(c+d x)\right )^3}{d e^2 (c+d x)}+\frac {(3 i b) \text {Subst}\left (\int \frac {\left (a+b \tan ^{-1}(x)\right )^2}{x (i+x)} \, dx,x,c+d x\right )}{d e^2}\\ &=-\frac {i \left (a+b \tan ^{-1}(c+d x)\right )^3}{d e^2}-\frac {\left (a+b \tan ^{-1}(c+d x)\right )^3}{d e^2 (c+d x)}+\frac {3 b \left (a+b \tan ^{-1}(c+d x)\right )^2 \log \left (2-\frac {2}{1-i (c+d x)}\right )}{d e^2}-\frac {\left (6 b^2\right ) \text {Subst}\left (\int \frac {\left (a+b \tan ^{-1}(x)\right ) \log \left (2-\frac {2}{1-i x}\right )}{1+x^2} \, dx,x,c+d x\right )}{d e^2}\\ &=-\frac {i \left (a+b \tan ^{-1}(c+d x)\right )^3}{d e^2}-\frac {\left (a+b \tan ^{-1}(c+d x)\right )^3}{d e^2 (c+d x)}+\frac {3 b \left (a+b \tan ^{-1}(c+d x)\right )^2 \log \left (2-\frac {2}{1-i (c+d x)}\right )}{d e^2}-\frac {3 i b^2 \left (a+b \tan ^{-1}(c+d x)\right ) \text {Li}_2\left (-1+\frac {2}{1-i (c+d x)}\right )}{d e^2}+\frac {\left (3 i b^3\right ) \text {Subst}\left (\int \frac {\text {Li}_2\left (-1+\frac {2}{1-i x}\right )}{1+x^2} \, dx,x,c+d x\right )}{d e^2}\\ &=-\frac {i \left (a+b \tan ^{-1}(c+d x)\right )^3}{d e^2}-\frac {\left (a+b \tan ^{-1}(c+d x)\right )^3}{d e^2 (c+d x)}+\frac {3 b \left (a+b \tan ^{-1}(c+d x)\right )^2 \log \left (2-\frac {2}{1-i (c+d x)}\right )}{d e^2}-\frac {3 i b^2 \left (a+b \tan ^{-1}(c+d x)\right ) \text {Li}_2\left (-1+\frac {2}{1-i (c+d x)}\right )}{d e^2}+\frac {3 b^3 \text {Li}_3\left (-1+\frac {2}{1-i (c+d x)}\right )}{2 d e^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.39, size = 263, normalized size = 1.61 \begin {gather*} \frac {-\frac {2 a^3}{c+d x}-\frac {6 a^2 b \text {ArcTan}(c+d x)}{c+d x}+6 a^2 b \log (c+d x)-3 a^2 b \log \left (1+c^2+2 c d x+d^2 x^2\right )+6 a b^2 \left (\text {ArcTan}(c+d x) \left (\left (-i-\frac {1}{c+d x}\right ) \text {ArcTan}(c+d x)+2 \log \left (1-e^{2 i \text {ArcTan}(c+d x)}\right )\right )-i \text {PolyLog}\left (2,e^{2 i \text {ArcTan}(c+d x)}\right )\right )+2 b^3 \left (-\frac {i \pi ^3}{8}+i \text {ArcTan}(c+d x)^3-\frac {\text {ArcTan}(c+d x)^3}{c+d x}+3 \text {ArcTan}(c+d x)^2 \log \left (1-e^{-2 i \text {ArcTan}(c+d x)}\right )+3 i \text {ArcTan}(c+d x) \text {PolyLog}\left (2,e^{-2 i \text {ArcTan}(c+d x)}\right )+\frac {3}{2} \text {PolyLog}\left (3,e^{-2 i \text {ArcTan}(c+d x)}\right )\right )}{2 d e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTan[c + d*x])^3/(c*e + d*e*x)^2,x]

[Out]

((-2*a^3)/(c + d*x) - (6*a^2*b*ArcTan[c + d*x])/(c + d*x) + 6*a^2*b*Log[c + d*x] - 3*a^2*b*Log[1 + c^2 + 2*c*d
*x + d^2*x^2] + 6*a*b^2*(ArcTan[c + d*x]*((-I - (c + d*x)^(-1))*ArcTan[c + d*x] + 2*Log[1 - E^((2*I)*ArcTan[c
+ d*x])]) - I*PolyLog[2, E^((2*I)*ArcTan[c + d*x])]) + 2*b^3*((-1/8*I)*Pi^3 + I*ArcTan[c + d*x]^3 - ArcTan[c +
 d*x]^3/(c + d*x) + 3*ArcTan[c + d*x]^2*Log[1 - E^((-2*I)*ArcTan[c + d*x])] + (3*I)*ArcTan[c + d*x]*PolyLog[2,
 E^((-2*I)*ArcTan[c + d*x])] + (3*PolyLog[3, E^((-2*I)*ArcTan[c + d*x])])/2))/(2*d*e^2)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.63, size = 2547, normalized size = 15.63

method result size
derivativedivides \(\text {Expression too large to display}\) \(2547\)
default \(\text {Expression too large to display}\) \(2547\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctan(d*x+c))^3/(d*e*x+c*e)^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(-a^3/e^2/(d*x+c)-3*I*a*b^2/e^2*ln(d*x+c)*ln(1-I*(d*x+c))-b^3/e^2/(d*x+c)*arctan(d*x+c)^3+3*b^3/e^2*ln(d*x
+c)*arctan(d*x+c)^2-3/2*b^3/e^2*arctan(d*x+c)^2*ln(1+(d*x+c)^2)+3*b^3/e^2*arctan(d*x+c)^2*ln(2)+3*b^3/e^2*arct
an(d*x+c)^2*ln((1+I*(d*x+c))/(1+(d*x+c)^2)^(1/2))+3*b^3/e^2*arctan(d*x+c)^2*ln(1-(1+I*(d*x+c))/(1+(d*x+c)^2)^(
1/2))+3*b^3/e^2*arctan(d*x+c)^2*ln(1+(1+I*(d*x+c))/(1+(d*x+c)^2)^(1/2))-3*b^3/e^2*arctan(d*x+c)^2*ln((1+I*(d*x
+c))^2/(1+(d*x+c)^2)-1)-I*b^3/e^2*arctan(d*x+c)^3-3/2*a^2*b/e^2*ln(1+(d*x+c)^2)+3*a^2*b/e^2*ln(d*x+c)-3/2*I*b^
3/e^2*Pi*csgn(I*((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1))*csgn(I*((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*(d*x+c))^2
/(1+(d*x+c)^2)))^2*arctan(d*x+c)^2-3/2*I*b^3/e^2*Pi*csgn(I/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))*csgn(I*((1+I*(d*
x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))^2*arctan(d*x+c)^2+3/4*I*b^3/e^2*arctan(d*x+c)^2*Pi
*csgn(I*(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))^2*csgn(I*(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2))^2)+3/2*I*b^3/e^2*arctan(
d*x+c)^2*Pi*csgn(I*(1+I*(d*x+c))/(1+(d*x+c)^2)^(1/2))*csgn(I*(1+I*(d*x+c))^2/(1+(d*x+c)^2))^2+3/4*I*b^3/e^2*ar
ctan(d*x+c)^2*Pi*csgn(I*(1+I*(d*x+c))^2/(1+(d*x+c)^2))*csgn(I*(1+I*(d*x+c))^2/(1+(d*x+c)^2)/(1+(1+I*(d*x+c))^2
/(1+(d*x+c)^2))^2)^2+3/4*I*b^3/e^2*arctan(d*x+c)^2*Pi*csgn(I/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2))^2)*csgn(I*(1+I*
(d*x+c))^2/(1+(d*x+c)^2)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2))^2)^2-3/4*I*b^3/e^2*arctan(d*x+c)^2*Pi*csgn(I*(1+I*(
d*x+c))/(1+(d*x+c)^2)^(1/2))^2*csgn(I*(1+I*(d*x+c))^2/(1+(d*x+c)^2))-3/2*I*b^3/e^2*arctan(d*x+c)^2*Pi*csgn(I*(
1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))*csgn(I*(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2))^2)^2+3/2*I*b^3/e^2*Pi*csgn(I*((1+I*
(d*x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))*csgn(((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*
(d*x+c))^2/(1+(d*x+c)^2)))*arctan(d*x+c)^2-3/2*I*b^3/e^2*Pi*csgn(I*((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*(
d*x+c))^2/(1+(d*x+c)^2)))*csgn(((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))^2*arctan(d
*x+c)^2+3/2*I*b^3/e^2*Pi*csgn(I*((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1))*csgn(I/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))*c
sgn(I*((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))*arctan(d*x+c)^2-3/4*I*b^3/e^2*arcta
n(d*x+c)^2*Pi*csgn(I/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2))^2)*csgn(I*(1+I*(d*x+c))^2/(1+(d*x+c)^2))*csgn(I*(1+I*(d
*x+c))^2/(1+(d*x+c)^2)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2))^2)-3/2*I*a*b^2/e^2*ln(d*x+c-I)*ln(1+(d*x+c)^2)+3/2*I*
a*b^2/e^2*ln(d*x+c-I)*ln(-1/2*I*(d*x+c+I))+3/2*I*a*b^2/e^2*ln(d*x+c+I)*ln(1+(d*x+c)^2)-3/2*I*a*b^2/e^2*ln(d*x+
c+I)*ln(1/2*I*(d*x+c-I))+3*I*a*b^2/e^2*ln(d*x+c)*ln(1+I*(d*x+c))-3/4*I*b^3/e^2*arctan(d*x+c)^2*Pi*csgn(I*(1+I*
(d*x+c))^2/(1+(d*x+c)^2))^3+3/4*I*b^3/e^2*arctan(d*x+c)^2*Pi*csgn(I*(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2))^2)^3-3/4
*I*b^3/e^2*arctan(d*x+c)^2*Pi*csgn(I*(1+I*(d*x+c))^2/(1+(d*x+c)^2)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2))^2)^3-3/2*
I*b^3/e^2*Pi*csgn(((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))^2*arctan(d*x+c)^2+3/2*I
*b^3/e^2*Pi*csgn(((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))^3*arctan(d*x+c)^2+3/2*I*
b^3/e^2*Pi*csgn(I*((1+I*(d*x+c))^2/(1+(d*x+c)^2)-1)/(1+(1+I*(d*x+c))^2/(1+(d*x+c)^2)))^3*arctan(d*x+c)^2-3/4*I
*a*b^2/e^2*ln(d*x+c+I)^2+3*I*a*b^2/e^2*dilog(1+I*(d*x+c))-3*I*a*b^2/e^2*dilog(1-I*(d*x+c))-3*a^2*b/e^2/(d*x+c)
*arctan(d*x+c)-6*I*b^3/e^2*arctan(d*x+c)*polylog(2,(1+I*(d*x+c))/(1+(d*x+c)^2)^(1/2))-6*I*b^3/e^2*arctan(d*x+c
)*polylog(2,-(1+I*(d*x+c))/(1+(d*x+c)^2)^(1/2))+3/2*I*b^3/e^2*Pi*arctan(d*x+c)^2-3*a*b^2/e^2/(d*x+c)*arctan(d*
x+c)^2-3*a*b^2/e^2*arctan(d*x+c)*ln(1+(d*x+c)^2)+6*a*b^2/e^2*arctan(d*x+c)*ln(d*x+c)+3/2*I*a*b^2/e^2*dilog(-1/
2*I*(d*x+c+I))+3/4*I*a*b^2/e^2*ln(d*x+c-I)^2-3/2*I*a*b^2/e^2*dilog(1/2*I*(d*x+c-I))+6*b^3/e^2*polylog(3,(1+I*(
d*x+c))/(1+(d*x+c)^2)^(1/2))+6*b^3/e^2*polylog(3,-(1+I*(d*x+c))/(1+(d*x+c)^2)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(d*x+c))^3/(d*e*x+c*e)^2,x, algorithm="maxima")

[Out]

-3/2*(d*(e^(-2)*log(d^2*x^2 + 2*c*d*x + c^2 + 1)/d^2 - 2*e^(-2)*log(d*x + c)/d^2) + 2*arctan(d*x + c)/(d^2*x*e
^2 + c*d*e^2))*a^2*b - a^3/(d^2*x*e^2 + c*d*e^2) - 1/32*(4*b^3*arctan(d*x + c)^3 - 3*b^3*arctan(d*x + c)*log(d
^2*x^2 + 2*c*d*x + c^2 + 1)^2 - 32*(d^2*x*e^2 + c*d*e^2)*integrate(1/32*(28*(b^3*d^2*x^2 + 2*b^3*c*d*x + b^3*c
^2 + b^3)*arctan(d*x + c)^3 + 12*(8*a*b^2*d^2*x^2 + 8*a*b^2*c^2 + b^3*c + 8*a*b^2 + (16*a*b^2*c + b^3)*d*x)*ar
ctan(d*x + c)^2 - 12*(b^3*d^2*x^2 + 2*b^3*c*d*x + b^3*c^2)*arctan(d*x + c)*log(d^2*x^2 + 2*c*d*x + c^2 + 1) -
3*(b^3*d*x + b^3*c - (b^3*d^2*x^2 + 2*b^3*c*d*x + b^3*c^2 + b^3)*arctan(d*x + c))*log(d^2*x^2 + 2*c*d*x + c^2
+ 1)^2)/(d^4*x^4*e^2 + 4*c*d^3*x^3*e^2 + (6*c^2*e^2 + e^2)*d^2*x^2 + c^4*e^2 + 2*(2*c^3*e^2 + c*e^2)*d*x + c^2
*e^2), x))/(d^2*x*e^2 + c*d*e^2)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(d*x+c))^3/(d*e*x+c*e)^2,x, algorithm="fricas")

[Out]

integral((b^3*arctan(d*x + c)^3 + 3*a*b^2*arctan(d*x + c)^2 + 3*a^2*b*arctan(d*x + c) + a^3)*e^(-2)/(d^2*x^2 +
 2*c*d*x + c^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {a^{3}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx + \int \frac {b^{3} \operatorname {atan}^{3}{\left (c + d x \right )}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx + \int \frac {3 a b^{2} \operatorname {atan}^{2}{\left (c + d x \right )}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx + \int \frac {3 a^{2} b \operatorname {atan}{\left (c + d x \right )}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx}{e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atan(d*x+c))**3/(d*e*x+c*e)**2,x)

[Out]

(Integral(a**3/(c**2 + 2*c*d*x + d**2*x**2), x) + Integral(b**3*atan(c + d*x)**3/(c**2 + 2*c*d*x + d**2*x**2),
 x) + Integral(3*a*b**2*atan(c + d*x)**2/(c**2 + 2*c*d*x + d**2*x**2), x) + Integral(3*a**2*b*atan(c + d*x)/(c
**2 + 2*c*d*x + d**2*x**2), x))/e**2

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(d*x+c))^3/(d*e*x+c*e)^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {atan}\left (c+d\,x\right )\right )}^3}{{\left (c\,e+d\,e\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atan(c + d*x))^3/(c*e + d*e*x)^2,x)

[Out]

int((a + b*atan(c + d*x))^3/(c*e + d*e*x)^2, x)

________________________________________________________________________________________